EconPapers    
Economics at your fingertips  
 

A remark on the product by the hyperplane class in the Chow ring of some complete intersections

René Mboro

Mathematische Nachrichten, 2025, vol. 298, issue 6, 2014-2036

Abstract: By classical calculation, for a smooth hypersurface Y⊂PCn+1$Y\subset \mathbb {P}^{n+1}_{\mathbb {C}}$, the product by the hyperplane class is zero on homologically trivial rational cycles, that is, ·H|Y:CHi(Y)hom,Q→CHi−1(Y)hom,Q$\cdot H_{|Y}:{\rm CH}_i(Y)_{\text{hom},\mathbb {Q}}\rightarrow {\rm CH}_{i-1}(Y)_{\text{hom},\mathbb {Q}}$ is 0 for any i$i$. This note extends that result to some complete intersections.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202400041

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:6:p:2014-2036

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-07-02
Handle: RePEc:bla:mathna:v:298:y:2025:i:6:p:2014-2036