EconPapers    
Economics at your fingertips  
 

Positive solution for the Kirchhoff‐type equation with supercritical concave and convex nonlinearities

Liying Shan and Wei Shuai

Mathematische Nachrichten, 2025, vol. 298, issue 8, 2476-2492

Abstract: We study the following Kirchhoff‐type equation 0.1 −a+b∫Ω|∇u|2dxΔu=|u|p−2u+λ|u|q−2u,x∈Ω,u=0,x∈∂Ω,$$\begin{equation}\hspace*{32pt} {\left\lbrace \def\eqcellsep{&}\begin{array}{ll}-{\left(a+b\displaystyle \int _{\Omega }|\nabla u|^2dx\right)}\Delta u=|u|^{p-2}u+\lambda |u|^{q-2}u, \ & x\in \Omega,\\ u=0,\ & x\in \partial \Omega, \end{array} \right.} \end{equation}$$where a$a$, b>0$b>0$, λ>0$\lambda >0$ is a parameter, Ω⊂RN$\Omega \subset {\mathbb {R}}^N$ is a bounded domain with C2$\mathcal {C}^2$‐boundary and 1 2$p>2$, there exists λ∗>0$\lambda ^*>0$ such that for each λ∈(0,λ∗)$\lambda \in (0,\lambda ^*)$ Equation (0.1) has a positive solution with negative energy. Furthermore, by using the improved Clark theorem, we can obtain a sequence of solutions with negative energy converging to zero in L∞(Ω)$L^{\infty }(\Omega)$ without the restriction of λ$\lambda$.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70002

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:8:p:2476-2492

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-08-15
Handle: RePEc:bla:mathna:v:298:y:2025:i:8:p:2476-2492