Positive solution for the Kirchhoff‐type equation with supercritical concave and convex nonlinearities
Liying Shan and
Wei Shuai
Mathematische Nachrichten, 2025, vol. 298, issue 8, 2476-2492
Abstract:
We study the following Kirchhoff‐type equation 0.1 −a+b∫Ω|∇u|2dxΔu=|u|p−2u+λ|u|q−2u,x∈Ω,u=0,x∈∂Ω,$$\begin{equation}\hspace*{32pt} {\left\lbrace \def\eqcellsep{&}\begin{array}{ll}-{\left(a+b\displaystyle \int _{\Omega }|\nabla u|^2dx\right)}\Delta u=|u|^{p-2}u+\lambda |u|^{q-2}u, \ & x\in \Omega,\\ u=0,\ & x\in \partial \Omega, \end{array} \right.} \end{equation}$$where a$a$, b>0$b>0$, λ>0$\lambda >0$ is a parameter, Ω⊂RN$\Omega \subset {\mathbb {R}}^N$ is a bounded domain with C2$\mathcal {C}^2$‐boundary and 1 2$p>2$, there exists λ∗>0$\lambda ^*>0$ such that for each λ∈(0,λ∗)$\lambda \in (0,\lambda ^*)$ Equation (0.1) has a positive solution with negative energy. Furthermore, by using the improved Clark theorem, we can obtain a sequence of solutions with negative energy converging to zero in L∞(Ω)$L^{\infty }(\Omega)$ without the restriction of λ$\lambda$.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70002
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:8:p:2476-2492
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().