Quasi‐isometric embeddings of C0(K,X)$C_{0}(K, X)$ spaces which induce isometries whenever X$X$ is a Hilbert space
Elói Medina Galego
Mathematische Nachrichten, 2025, vol. 298, issue 9, 2975-2985
Abstract:
Suppose that K$K$ and S$S$ are locally compact Hausdorff spaces and X$X$ is a Hilbert space. It is proven that if there exist real numbers M≥1$M \ge 1$, L≥0$L \ge 0$ and a map T$T$ from C0(K,X)$C_{0}(K,X)$ to C0(S,X)$C_{0}(S,X)$ satisfying 1M∥f−g∥−L≤∥T(f)−T(g)∥≤M∥f−g∥+L,$$\begin{equation*} \frac{1}{M}\Vert f-g\Vert -L\le \Vert T(f)-T(g)\Vert \le M\Vert f-g\Vert +L,\ \end{equation*}$$for every f$f$ and g$g$ in C0(K,X)${C}_{0}(K,X)$, then there are a locally compact subset S0$S_0$ of S$S$ and a proper continuous function φ$\varphi$ of S0$S_0$ onto K$K$, on the assumption that M2
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.12033
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:9:p:2975-2985
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().