Estimates for approximation characteristics of Nikol'skii–Besov classes of functions with mixed smoothness in the space Bq,1${B_{q,1}}$
K. V. Pozharska and
A. S. Romanyuk
Mathematische Nachrichten, 2025, vol. 298, issue 9, 3114-3134
Abstract:
Exact‐order estimates are obtained for some approximation characteristics of the classes of periodic multivariate functions with mixed smoothness (the Nikol'skii–Besov classes Bp,θr$B^{\bm{r}}_{p, \theta }$) in the space Bq,1$B_{q,1}$, 1≤p,q≤∞$1 \le p, q \le \infty$, 1≤θ≤∞$1\le \theta \le \infty$, whose norm is stronger than the Lq$L_q$‐norm. It is shown that in the multivariate case (in contrast to the univariate) in most of the considered situations the obtained estimates differ in order from the corresponding estimates in the space Lq$L_q$. Besides, a significant progress is made in estimates for the considered approximation characteristics of the classes Bp,θr$B^{\bm{r}}_{p, \theta }$ in the space Bq,1$B_{q, 1}$ comparing to the known estimates in the space Lq$L_q$.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70027
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:9:p:3114-3134
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().