EconPapers    
Economics at your fingertips  
 

On rank 3 quadratic equations of Veronese embeddings

Euisung Park and Saerom Sim

Mathematische Nachrichten, 2025, vol. 298, issue 9, 3135-3155

Abstract: This paper studies the geometric structure of the locus Φ3(X)$\Phi _3 (X)$ of rank 3 quadratic equations of the Veronese variety X=νd(Pn)$X = \nu _d ({\mathbb {P}}^n)$. Specifically, we investigate the minimal irreducible decomposition of Φ3(X)$\Phi _3 (X)$ of rank 3 quadratic equations and analyze the geometric properties of the irreducible components of Φ3(X)$\Phi _3 (X)$ such as their desingularizations. Additionally, we explore the non‐singularity and singularity of these irreducible components of Φ3(X)$\Phi _3 (X)$.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70028

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:9:p:3135-3155

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-09-14
Handle: RePEc:bla:mathna:v:298:y:2025:i:9:p:3135-3155