Multiplicity and asymptotic behavior of normalized solutions for fourth‐order equations of the Kirchhoff type
Tao Han,
Hong‐Rui Sun and
Zhen‐Feng Jin
Mathematische Nachrichten, 2025, vol. 298, issue 9, 3172-3190
Abstract:
In this paper, we study the following fourth‐order equation of the Kirchhoff type Δ2u−(a+b∥∇u∥22)Δu=λu+|u|p−2uinRd$$\begin{equation*} \Delta ^{2}u-(a+b\Vert \nabla u\Vert _{2}^{2})\Delta u=\lambda u+|u|^{p-2}u \quad \text{ in } \mathbb {R}^{d} \end{equation*}$$under the normalized constraint ∥u∥2=m$\Vert u\Vert _{2}=m$, where a,b,m>0$a,b,m>0$ are constants. d≥2$d\ge 2$ and 2
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70031
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:9:p:3172-3190
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().