EconPapers    
Economics at your fingertips  
 

Multiplicity and asymptotic behavior of normalized solutions for fourth‐order equations of the Kirchhoff type

Tao Han, Hong‐Rui Sun and Zhen‐Feng Jin

Mathematische Nachrichten, 2025, vol. 298, issue 9, 3172-3190

Abstract: In this paper, we study the following fourth‐order equation of the Kirchhoff type Δ2u−(a+b∥∇u∥22)Δu=λu+|u|p−2uinRd$$\begin{equation*} \Delta ^{2}u-(a+b\Vert \nabla u\Vert _{2}^{2})\Delta u=\lambda u+|u|^{p-2}u \quad \text{ in } \mathbb {R}^{d} \end{equation*}$$under the normalized constraint ∥u∥2=m$\Vert u\Vert _{2}=m$, where a,b,m>0$a,b,m>0$ are constants. d≥2$d\ge 2$ and 2

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70031

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:9:p:3172-3190

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-09-14
Handle: RePEc:bla:mathna:v:298:y:2025:i:9:p:3172-3190