A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins
Tugba Cayirli,
Kum Khiong Yang and
Ser Aik Quek
Production and Operations Management, 2012, vol. 21, issue 4, 682-697
Abstract:
This study introduces a universal “Dome” appointment rule that can be parameterized through a planning constant for different clinics characterized by the environmental factors—no‐shows, walk‐ins, number of appointments per session, variability of service times, and cost of doctor's time to patients’ time. Simulation and nonlinear regression are used to derive an equation to predict the planning constant as a function of the environmental factors. We also introduce an adjustment procedure for appointment systems to explicitly minimize the disruptive effects of no‐shows and walk‐ins. The procedure adjusts the mean and standard deviation of service times based on the expected probabilities of no‐shows and walk‐ins for a given target number of patients to be served, and it is thus relevant for any appointment rule that uses the mean and standard deviation of service times to construct an appointment schedule. The results show that our Dome rule with the adjustment procedure performs better than the traditional rules in the literature, with a lower total system cost calculated as a weighted sum of patients’ waiting time, doctor's idle time, and doctor's overtime. An open‐source decision‐support tool is also provided so that healthcare managers can easily develop appointment schedules for their clinical environment.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.1111/j.1937-5956.2011.01297.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:21:y:2012:i:4:p:682-697
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().