Optimal Choice for Appointment Scheduling Window under Patient No-Show Behavior
Nan Liu
Production and Operations Management, 2016, vol. 25, issue 1, 128-142
Abstract:
type="main" xml:id="poms12401-abs-0001">
Observing that patients with longer appointment delays tend to have higher no-show rates, many providers place a limit on how far into the future that an appointment can be scheduled. This article studies how the choice of appointment scheduling window affects a provider's operational efficiency. We use a single server queue to model the registered appointments in a provider's work schedule, and the capacity of the queue serves as a proxy of the size of the appointment window. The provider chooses a common appointment window for all patients to maximize her long-run average net reward, which depends on the rewards collected from patients served and the “penalty” paid for those who cannot be scheduled. Using a stylized M/M/1/K queueing model, we provide an analytical characterization for the optimal appointment queue capacity K, and study how it should be adjusted in response to changes in other model parameters. In particular, we find that simply increasing appointment window could be counterproductive when patients become more likely to show up. Patient sensitivity to incremental delays, rather than the magnitudes of no-show probabilities, plays a more important role in determining the optimal appointment window. Via extensive numerical experiments, we confirm that our analytical results obtained under the M/M/1/K model continue to hold in more realistic settings. Our numerical study also reveals substantial efficiency gains resulted from adopting an optimal appointment scheduling window when the provider has no other operational levers available to deal with patient no-shows. However, when the provider can adjust panel size and overbooking level, limiting the appointment window serves more as a substitute strategy, rather than a complement.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://hdl.handle.net/10.1111/poms.2016.25.issue-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:25:y:2016:i:1:p:128-142
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().