EconPapers    
Economics at your fingertips  
 

Traffic-Based Labor Planning in Retail Stores

Howard Hao-Chun Chuang, Rogelio Oliva and Olga Perdikaki

Production and Operations Management, 2016, vol. 25, issue 1, 96-113

Abstract: type="main" xml:id="poms12403-abs-0001">

Staffing decisions are crucial for retailers since staffing levels affect store performance and labor-related expenses constitute one of the largest components of retailers’ operating costs. With the goal of improving staffing decisions and store performance, we develop a labor-planning framework using proprietary data from an apparel retail chain. First, we propose a sales response function based on labor adequacy (the labor to traffic ratio) that exhibits variable elasticity of substitution between traffic and labor. When compared to a frequently used function with constant elasticity of substitution, our proposed function exploits information content from data more effectively and better predicts sales under extreme labor/traffic conditions. We use the validated sales response function to develop a data-driven staffing heuristic that incorporates the prediction loss function and uses past traffic to predict optimal labor. In counterfactual experimentation, we show that profits achieved by our heuristic are within 0.5% of the optimal (attainable if perfect traffic information was available) under stable traffic conditions, and within 2.5% of the optimal under extreme traffic variability. We conclude by discussing implications of our findings for researchers and practitioners.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://hdl.handle.net/10.1111/poms.2016.25.issue-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:25:y:2016:i:1:p:96-113

Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956

Access Statistics for this article

Production and Operations Management is currently edited by Kalyan Singhal

More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:popmgt:v:25:y:2016:i:1:p:96-113