EconPapers    
Economics at your fingertips  
 

The Operational Value of Social Media Information

Ruomeng Cui, Santiago Gallino, Antonio Moreno and Dennis J. Zhang

Production and Operations Management, 2018, vol. 27, issue 10, 1749-1769

Abstract: While the value of using social media information has been established in multiple business contexts, the field of operations and supply chain management have not yet explored the possibilities it offers in improving firms' operational decisions. This study attempts to do that by empirically studying whether using publicly available social media information can improve the accuracy of daily sales forecasts.We collaborated with an online apparel retailer to assemble a dataset that combines (1) detailed internal operational information, including data on sales, advertising, and promotions, as well as (2) publicly available social media information obtained from Facebook. We implement a variety of machine learning methods to forecast daily sales. We find that using social media information results in statistically significant improvements in the out‐of‐sample accuracy of the forecasts, with relative improvements ranging from 12.85% to 23.23% over different forecast horizons. We also demonstrate that nonlinear boosting models with feature selection, such as random forests, perform significantly better than traditional linear models. The best‐performing method (random forest) yields an out‐of‐sample MAPE of 7.21% when not using social media information and 5.73% when using social media information is used. In both cases, this significantly improves the accuracy of the company's internal forecasts (a MAPE of 11.97%). Combining these empirical results, we provide recommendations for forecasting sales in general as well as with social media information.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (79)

Downloads: (external link)
https://doi.org/10.1111/poms.12707

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:27:y:2018:i:10:p:1749-1769

Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956

Access Statistics for this article

Production and Operations Management is currently edited by Kalyan Singhal

More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:popmgt:v:27:y:2018:i:10:p:1749-1769