EconPapers    
Economics at your fingertips  
 

Predictive and Prescriptive Analytics for Location Selection of Add‐on Retail Products

Teng Huang, David Bergman and Ram Gopal

Production and Operations Management, 2019, vol. 28, issue 7, 1858-1877

Abstract: In this paper, we study an analytical approach to selecting expansion locations for retailers selling add‐on products whose demand is derived from the demand for a separate base product. Demand for the add‐on product is realized only as a supplement to the demand for the base product. In our context, either of the two products could be subject to spatial autocorrelation where demand at a given location is impacted by demand at other locations. Using data from an industrial partner selling add‐on products, we build predictive models for understanding the derived demand of the add‐on product and establish an optimization framework for automating expansion decisions to maximize expected sales. Interestingly, spatial autocorrelation and the complexity of the predictive model impact the complexity and the structure of the prescriptive optimization model. Our results indicate that the formulated models are highly effective in predicting add‐on‐product sales, and that using the optimization framework built on the predictive model can result in substantial increases in expected sales over baseline policies.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/poms.13018

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:28:y:2019:i:7:p:1858-1877

Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956

Access Statistics for this article

Production and Operations Management is currently edited by Kalyan Singhal

More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:popmgt:v:28:y:2019:i:7:p:1858-1877