Individualized No‐Show Predictions: Effect on Clinic Overbooking and Appointment Reminders
Yutian Li,
Sammi Yu Tang,
Joseph Johnson and
David A. Lubarsky
Production and Operations Management, 2019, vol. 28, issue 8, 2068-2086
Abstract:
Patient no‐shows and late cancellations lead to clinic inefficiency, high clinic costs and low patient satisfaction. The two main strategies clinics employed to alleviate the adverse effects of no‐shows are overbooking and patient appointment reminders. Developing effective overbooking schedules depends on accurately predicting each patient’s no‐show probability, while developing effective reminder systems requires a patient‐level estimate of communication sensitivity. Current methods of estimating no‐show probabilities do not produce such patient‐level predictions. To remedy this, we develop a Bayesian nested logit model which utilizes appointment confirmation data and estimates individual‐level coefficients for patient‐specific predictors. A log‐likelihood comparison of model fit on 12 months of appointment data shows that the Bayesian model outperforms the standard logit model by about 30% improvement in model fit. Additionally, our Bayesian model allows categorization of patients based on their appointment confirmation behavior. Finally, using patient‐specific no‐show probabilities as an input to a simulated appointment scheduler we find that the Bayesian model improves clinic profit over the standard logit model. The benefit comes mainly from waiting cost reduction when no‐show probability is low and from physician overtime and idle time cost reduction when no‐show probability is high. Our study has two managerial implications. First, the Bayesian method allows customizing appointment reminder effort based on patient’s confirmation behavior. Second, the Bayesian method also allows improved overbooking scheduling especially in clinics that experience large patient throughput.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/poms.13033
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:28:y:2019:i:8:p:2068-2086
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().