Managing Perishable Inventory Systems with Multiple Priority Classes
Hossein Abouee‐Mehrizi,
Opher Baron,
Oded Berman and
David Chen
Production and Operations Management, 2019, vol. 28, issue 9, 2305-2322
Abstract:
Preferences for different ages of perishable products exist in many applications, including grocery items and blood products. In this paper, we study a multi‐period stochastic perishable inventory system with multiple priority classes that require products of different ages. The firm orders the product with a positive lead time and sells it to multiple demand classes, each only accepting products with remaining lifetime longer than a threshold. In each period, after demand realization, the firm decides how to allocate the on‐hand inventory to different demand classes with different backorder or lost‐sale cost. At the end of each period, the firm can dispose inventory of any age. We formulate this problem as a Markov decision process and characterize the optimal ordering, allocation, and disposal policies. When unfulfilled demand is backlogged, we show that the optimal order quantity is decreasing in the inventory levels and is more sensitive to the inventory level of fresher products, the optimal allocation policy is a sequential rationing policy, and the optimal disposal policy is characterized by n − 1 thresholds. For the lost‐sale case, we show that the optimal allocation and disposal policies have the same structure but the optimal ordering policy may be different. Based on the structure of the optimal policy, we develop an efficient heuristic with a cost that is at most 4% away from the optimal cost in our numerical examples. Using numerical studies, we show that the ordering and allocation policies are close to optimal even if the firm cannot intentionally dispose products. Moreover, ignoring the differences between demand classes and using simple allocation policy (e.g., FIFO) can significantly increase the total cost. We examine how the firm can improve the control of perishable items and show that the benefit of decreasing the lead time is more significant than that of increasing the lifetime of the products or that of decreasing the acceptance threshold of the demand. The analysis is extended to systems with age dependent disposal cost and with stochastic supply.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1111/poms.13058
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:28:y:2019:i:9:p:2305-2322
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().