Efficient Detection of Environmental Violators: A Big Data Approach
Xiangyu Chang,
Yinghui Huang,
Mei Li,
Xin Bo and
Subodha Kumar
Production and Operations Management, 2021, vol. 30, issue 5, 1246-1270
Abstract:
The detection of environmental violators is critical to the long‐term adoption of sustainability in supply chain management. However, there exist manufacturing facilities that report false environmental monitoring data, thereby seriously hampering governments’ efforts to identify true offenders and to properly intervene. We integrate waste gas data from the world’s largest Continuous Emission Monitoring System (CEMS) with a publicly available Violation and Punishment Dataset (VPD) to build prediction models for the identification of environmental violators. We utilize and create innovative machine learning approaches to overcome analytical challenges associated with empirical data. First, we use a feature engineering approach to generate features from the raw, and possibly fraudulent, reporting data. This overcomes the challenges associated with low fidelity, irregularity, and the presence of extreme values in the raw dataset. Second, while building prediction models, we develop new approaches to positive and unlabeled learning to overcome the challenges posed by sparsity and mislabeled data. Our prediction model achieves satisfactory results in a related field test. Our study develops new techniques for big data analytics, which greatly improve the efficiency and effectiveness in detection of environmental violators and enhance operational outcomes of environmental protection agencies. This research is a joint effort between academia and practitioners, as evidenced by the participation of the Ministry of Ecology and Environment of People’s Republic of China. The Ministry kindly granted us direct data access, as well as opportunities to interview Subject Matter Experts at the Ministry, which led to research insights incorporated in this manuscript. Our research findings have global implications, as CEMS devices are universally adopted to monitor waste gas emissions.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/poms.13272
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:30:y:2021:i:5:p:1246-1270
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().