Network Size and Content Generation on Social Media Platforms
Zaiyan Wei,
Mo Xiao and
Rong Rong
Production and Operations Management, 2021, vol. 30, issue 5, 1406-1426
Abstract:
Social media has been increasingly integrated into firm operations. Past literature documented the operational value of the content generated by social media users but paid little attention to the users’ incentives to generate and share content. We fill in the gap by linking a user’s social network to her content contribution. Specifically, we distinguish the role of the followee network (the group of people being followed by the user) from the role of the follower network. When a user follows more people, she may spend more time in consuming content than generating content (the substitution effect); she may gain more conflicting information from her followees, obfuscating her incentives to generate content (the information overload effect). Conversely, gathering more information from her followees may facilitate her own content generation (the information sharing effect). Through different identification strategies using multiple datasets from two influential social media platforms, we find that the effects of followees and followers are asymmetric in signs and different in magnitudes. Most notably, a user generates less content with a larger followee network, especially when she faces more time constraints. Our findings suggest social media platforms and companies leveraging social media in their operations incorporate network analytics to promote their user engagement.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/poms.13328
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:30:y:2021:i:5:p:1406-1426
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().