An efficient learning framework for multiproduct inventory systems with customer choices
Xiangyu Gao and
Huanan Zhang
Production and Operations Management, 2022, vol. 31, issue 6, 2492-2516
Abstract:
We consider a periodic‐review multiproduct inventory system where customers' purchasing decisions are affected by the product availabilities. Demands need to be learned on the fly, through the partial and censored feedback of customers. For this learning problem, if one ignores the inventory dynamic and treats it as a multiarmed bandit problem and directly applies some existing algorithms, for example, the upper confidence bound (UCB) algorithm, the convergence can be extremely slow due to the high‐dimensionality of the policy space. We propose a UCB‐based learning framework that utilizes the sales information based on two improvement ideas. We illustrate how these two ideas can be incorporated by considering two specific systems: (1) multiproduct inventory system with stock‐out substitutions, (2) multiproduct inventory assortment problem for urban warehouses. We develop improved UCB algorithms for both systems, using the two improvements. For both systems, the algorithm can achieve a tight worst‐case convergence rate (up to a logarithmic term) on the planning horizon T$T$. Extensive numerical experiments are conducted to demonstrate the efficiency of the improved UCB algorithms for the two systems. In the experiments, when there are more than 1000 candidate policies to choose from, the algorithms can achieve around 15%$15\%$ average expected regret within 50 periods and continue to steadily improve as time increases.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/poms.13693
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:31:y:2022:i:6:p:2492-2516
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().