EconPapers    
Economics at your fingertips  
 

The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice

Cedric A. Lehmann, Christiane B. Haubitz, Andreas Fügener and Ulrich W. Thonemann

Production and Operations Management, 2022, vol. 31, issue 9, 3419-3434

Abstract: Although algorithmic decision support is omnipresent in many managerial tasks, a lack of algorithm transparency is often stated as a barrier to successful human–machine collaboration. In this paper, we analyze the effects of algorithm transparency on the use of advice from algorithms with different degrees of complexity. We conduct a set of laboratory experiments in which participants receive identical advice from algorithms with different levels of transparency and complexity. Our results indicate that not the algorithm itself, but the individually perceived appropriateness of algorithmic complexity moderates the effects of transparency on the use of advice. We summarize this effect as a plateau curve: While perceiving an algorithm as too simple severely harms the use of its advice, the perception of an algorithm as being too complex has no significant effect. Our insights suggest that managers do not have to be concerned about revealing algorithms that are perceived to be appropriately complex or too complex to decision‐makers, even if the decision‐makers do not fully comprehend them. However, providing transparency on algorithms that are perceived to be simpler than appropriate could disappoint people's expectations and thereby reduce the use of their advice.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/poms.13770

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:31:y:2022:i:9:p:3419-3434

Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956

Access Statistics for this article

Production and Operations Management is currently edited by Kalyan Singhal

More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:popmgt:v:31:y:2022:i:9:p:3419-3434