Context‐based dynamic pricing with online clustering
Sentao Miao,
Xi Chen,
Xiuli Chao,
Jiaxi Liu and
Yidong Zhang
Production and Operations Management, 2022, vol. 31, issue 9, 3559-3575
Abstract:
We consider a context‐based dynamic pricing problem of online products, which have low sales. Sales data from Alibaba, a major global online retailer, illustrate the prevalence of low‐sale products. For these products, existing single‐product dynamic pricing algorithms do not work well due to insufficient data samples. To address this challenge, we propose pricing policies that concurrently perform clustering over product demand and set individual pricing decisions on the fly. By clustering data and identifying products that have similar demand patterns, we utilize sales data from products within the same cluster to improve demand estimation for better pricing decisions. We evaluate the algorithms using regret, and the result shows that when product demand functions come from multiple clusters, our algorithms significantly outperform traditional single‐product pricing policies. Numerical experiments using a real data set from Alibaba demonstrate that the proposed policies, compared with several benchmark policies, increase the revenue. The results show that online clustering is an effective approach to tackling dynamic pricing problems associated with low‐sale products.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/poms.13783
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:31:y:2022:i:9:p:3559-3575
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().