EconPapers    
Economics at your fingertips  
 

Addressing distributional shifts in operations management: The case of order fulfillment in customized production

Julian Senoner, Bernhard Kratzwald, Milan Kuzmanovic, Torbjørn H. Netland and Stefan Feuerriegel

Production and Operations Management, 2023, vol. 32, issue 10, 3022-3042

Abstract: To meet order fulfillment targets, manufacturers seek to optimize production schedules. Machine learning can support this objective by predicting throughput times on production lines given order specifications. However, this is challenging when manufacturers produce customized products because customization often leads to changes in the probability distribution of operational data—so‐called distributional shifts. Distributional shifts can harm the performance of predictive models when deployed to future customer orders with new specifications. The literature provides limited advice on how such distributional shifts can be addressed in operations management. Here, we propose a data‐driven approach based on adversarial learning, which allows us to account for distributional shifts in manufacturing settings with high degrees of product customization. We empirically validate our proposed approach using real‐world data from a job shop production that supplies large metal components to an oil platform construction yard. Across an extensive series of numerical experiments, we find that our adversarial learning approach outperforms common baselines. Overall, this paper shows how production managers can improve their decision making under distributional shifts.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/poms.14021

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:32:y:2023:i:10:p:3022-3042

Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956

Access Statistics for this article

Production and Operations Management is currently edited by Kalyan Singhal

More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:popmgt:v:32:y:2023:i:10:p:3022-3042