Actions speak louder than words: Imputing users’ reputation from transaction history
Jiaying Deng,
Hossein Ghasemkhani,
Yong Tan and
Arvind K Tripathi
Production and Operations Management, 2023, vol. 32, issue 4, 1096-1111
Abstract:
The choice of market mechanism is key to success for any online marketplace. In recent years, as peer‐to‐peer (P2P) lending has seen phenomenal growth, leading P2P lending platforms have used various market mechanisms and, in some cases, even switched from one mechanism to another, chasing higher market share and overall growth. While Prosper.com, a leading P2P lending platform, has switched from the auction lending model to a fixed price lending model, recent studies show that overall social welfare was higher with the auction lending model. While the auction lending model gives more power to the lenders, the success of the auction lending model hinges on the accuracy of lenders’ assessment of the credit risk of the borrowers. Building on extant literature and in support of the auction lending model to increase social welfare, we design an artifact to dynamically estimate borrower reputation to help the lenders and improve the allocative efficiency in P2P lending markets. We posit that borrowers’ reputation built on transactional data, readily available on P2P lending platforms, represents the collective perception of the lenders about the borrowers. We propose a dynamic latent class model of reputation and use the latent instrumental variable approach to deal with endogeneity. We test our artifact using real‐world P2P lending data. We show that accounting for reputation improves the model's explanatory power and provides a way to empirically model the evolution and impact of reputation in online platforms where repeated transactions are performed.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/poms.13913
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:32:y:2023:i:4:p:1096-1111
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().