A nonparametric approach for setting safety stock levels
John P. Saldanha,
Bradley S. Price and
Douglas J. Thomas
Production and Operations Management, 2023, vol. 32, issue 4, 1150-1168
Abstract:
In practice, lead time demand (LTD) can be skewed, multi‐modal or highly variable, and these factors compromise the validity of typical approaches used for setting safety stock levels. Motivated by encountering this problem at our industry partner, we develop an approach for setting safety stock levels using the bootstrap, a widely used statistical procedure. Existing bootstrap approaches for inventory management either operate directly on observed LTD or assume deterministic lead times, permitting direct application of the bootstrap approach for univariate quantile estimation. As LTD is a convolution of multiple random demands over a random lead time, a multivariate bootstrap approach is required. As we demonstrate, when lead times are stochastic, our multivariate approach provides improved safety stock estimates. We develop a multivariate central limit theorem for the bootstrap mean and bootstrap quantile—components of the safety stock calculation—highlighting why the generalization of these bootstrap methods is critical for inventory management. These results provide a theoretical underpinning for the bootstrap estimator of safety stock and permit the construction of confidence intervals for safety stock estimates, allowing decision makers to understand the reliability with which the desired service level will be achieved. Building on our theoretical results, and supported by numerical experiments, we provide insights on the behavior of the bootstrap for various LTD distributions, which our results demonstrate are critical when employing the bootstrap method. Implementation of our approach with our industry partner resulted in an inventory investment reduction of $1.17 million combined with an overall increase in service level. Our approach is general and can be implemented without modification in other settings.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/poms.13918
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:32:y:2023:i:4:p:1150-1168
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().