Pandemic lockdown, isolation, and exit policies based on machine learning predictions
Theodoros Evgeniou,
Mathilde Fekom,
Anton Ovchinnikov,
Raphaël Porcher,
Camille Pouchol and
Nicolas Vayatis
Production and Operations Management, 2023, vol. 32, issue 5, 1307-1322
Abstract:
The widespread lockdowns imposed in many countries at the beginning of the COVID‐19 pandemic elevated the importance of research on pandemic management when medical solutions such as vaccines are unavailable. We present a framework that combines a standard epidemiological SEIR (susceptible–exposed–infected–removed) model with an equally standard machine learning classification model for clinical severity risk, defined as an individual's risk of needing intensive care unit (ICU) treatment if infected. Using COVID‐19–related data and estimates for France as of spring 2020, we then simulate isolation and exit policies. Our simulations show that policies considering clinical risk predictions could relax isolation restrictions for millions of the lowest risk population months earlier while consistently abiding by ICU capacity restrictions. Exit policies without risk predictions, meanwhile, would considerably exceed ICU capacity or require the isolation of a substantial portion of population for over a year in order to not overwhelm the medical system. Sensitivity analyses further decompose the impact of various elements of our models on the observed effects. Our work indicates that predictive modeling based on machine learning and artificial intelligence could bring significant value to managing pandemics. Such a strategy, however, requires governments to develop policies and invest in infrastructure to operationalize personalized isolation and exit policies based on risk predictions at scale. This includes health data policies to train predictive models and apply them to all residents, as well as policies for targeted resource allocation to maintain strict isolation for high‐risk individuals.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/poms.13726
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:32:y:2023:i:5:p:1307-1322
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().