The framework of parametric and nonparametric operational data analytics
Qi Feng and
J. George Shanthikumar
Production and Operations Management, 2023, vol. 32, issue 9, 2685-2703
Abstract:
This paper introduces the general philosophy of the Operational Data Analytics (ODA) framework for data‐based decision modeling. The fundamental development of this framework lies in establishing the direct mapping from data to decision by identifying the appropriate class of operational statistics. The efficient decision making relies on a careful balance between data integration and decision validation. Through a canonical decision making problem under uncertainty, we show that the existing approaches (including statistical estimation and then optimization, retrospective optimization, sample average approximation, regularization, robust optimization, and robust satisficing) can all be unified through the lens of the ODA formulation. To make the key concepts accessible, we demonstrate, using a simple running example, how some of the existing approaches may become equivalent under the ODA framework, and how the ODA solution can improve the decision efficiency, especially in the small sample regime.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/poms.14038
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:popmgt:v:32:y:2023:i:9:p:2685-2703
Ordering information: This journal article can be ordered from
http://onlinelibrary ... 1111/(ISSN)1937-5956
Access Statistics for this article
Production and Operations Management is currently edited by Kalyan Singhal
More articles in Production and Operations Management from Production and Operations Management Society
Bibliographic data for series maintained by Wiley Content Delivery ().