Multiple Kernel Procedure: an Asymptotic Support
Philippe Vieu
Scandinavian Journal of Statistics, 1999, vol. 26, issue 1, 61-72
Abstract:
ABSTRACT. This paper deals with kernel non‐parametric estimation. The multiple kernel method, as proposed by Berlinet (1993), consists in choosing both the smoothing parameter and the order of the kernel function. In this paper we follow this general idea, and the selection is carried out by a combination of plug‐in and cross‐validation techniques. In a first attempt we give an asymptotic optimality theorem which is stated in a general unifying setting that includes many curve estimation problems. Then, as an illustration, it will be seen how this behaves in both special cases of kernel density and kernel regression estimation.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/1467-9469.00137
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:26:y:1999:i:1:p:61-72
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().