EconPapers    
Economics at your fingertips  
 

A Generalized Bayes Rule for Prediction

José Manuel Corcuera and Federica Giummolè

Scandinavian Journal of Statistics, 1999, vol. 26, issue 2, 265-279

Abstract: In the case of prior knowledge about the unknown parameter, the Bayesian predictive density coincides with the Bayes estimator for the true density in the sense of the Kullback‐Leibler divergence, but this is no longer true if we consider another loss function. In this paper we present a generalized Bayes rule to obtain Bayes density estimators with respect to any α‐divergence, including the Kullback‐Leibler divergence and the Hellinger distance. For curved exponential models, we study the asymptotic behaviour of these predictive densities. We show that, whatever prior we use, the generalized Bayes rule improves (in a non‐Bayesian sense) the estimative density corresponding to a bias modification of the maximum likelihood estimator. It gives rise to a correspondence between choosing a prior density for the generalized Bayes rule and fixing a bias for the maximum likelihood estimator in the classical setting. A criterion for comparing and selecting prior densities is also given.

Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://doi.org/10.1111/1467-9469.00149

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:26:y:1999:i:2:p:265-279

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:26:y:1999:i:2:p:265-279