Cox Regression with Incomplete Covariate Measurements using the EM‐algorithm
Torben Martinussen
Scandinavian Journal of Statistics, 1999, vol. 26, issue 4, 479-491
Abstract:
Ibrahim (1990) used the EM‐algorithm to obtain maximum likelihood estimates of the regression parameters in generalized linear models with partially missing covariates. The technique was termed EM by the method of weights. In this paper, we generalize this technique to Cox regression analysis with missing values in the covariates. We specify a full model letting the unobserved covariate values be random and then maximize the observed likelihood. The asymptotic covariance matrix is estimated by the inverse information matrix. The missing data are allowed to be missing at random but also the non‐ignorable non‐response situation may in principle be considered. Simulation studies indicate that the proposed method is more efficient than the method suggested by Paik & Tsai (1997). We apply the procedure to a clinical trials example with six covariates with three of them having missing values.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/1467-9469.00163
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:26:y:1999:i:4:p:479-491
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().