EconPapers    
Economics at your fingertips  
 

Shrinkage Structure of Partial Least Squares

O. C. Lingjaerde and Nils Christophersen

Scandinavian Journal of Statistics, 2000, vol. 27, issue 3, 459-473

Abstract: Partial least squares regression (PLS) is one method to estimate parameters in a linear model when predictor variables are nearly collinear. One way to characterize PLS is in terms of the scaling (shrinkage or expansion) along each eigenvector of the predictor correlation matrix. This characterization is useful in providing a link between PLS and other shrinkage estimators, such as principal components regression (PCR) and ridge regression (RR), thus facilitating a direct comparison of PLS with these methods. This paper gives a detailed analysis of the shrinkage structure of PLS, and several new results are presented regarding the nature and extent of shrinkage.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/1467-9469.00201

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:27:y:2000:i:3:p:459-473

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:27:y:2000:i:3:p:459-473