Linear Regression Models under Conditional Independence Restrictions
David Causeur and
Thierry Dhorne
Scandinavian Journal of Statistics, 2003, vol. 30, issue 3, 637-650
Abstract:
Maximum likelihood estimation is investigated in the context of linear regression models under partial independence restrictions. These restrictions aim to assume a kind of completeness of a set of predictors Z in the sense that they are sufficient to explain the dependencies between an outcome Y and predictors X: ℒ(Y|Z, X) = ℒ(Y|Z), where ℒ(·|·) stands for the conditional distribution. From a practical point of view, the former model is particularly interesting in a double sampling scheme where Y and Z are measured together on a first sample and Z and X on a second separate sample. In that case, estimation procedures are close to those developed in the study of double‐regression by Engel & Walstra (1991) and Causeur & Dhorne (1998). Properties of the estimators are derived in a small sample framework and in an asymptotic one, and the procedure is illustrated by an example from the food industry context.
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9469.00355
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:30:y:2003:i:3:p:637-650
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().