EconPapers    
Economics at your fingertips  
 

Density Estimation for the Metropolis–Hastings Algorithm

M. Sköld and G. O. Roberts

Scandinavian Journal of Statistics, 2003, vol. 30, issue 4, 699-718

Abstract: Abstract. Kernel density estimation is an important tool in visualizing posterior densities from Markov chain Monte Carlo output. It is well known that when smooth transition densities exist, the asymptotic properties of the estimator agree with those for independent data. In this paper, we show that because of the rejection step of the Metropolis–Hastings algorithm, this is no longer true and the asymptotic variance will depend on the probability of accepting a proposed move. We find an expression for this variance and apply the result to algorithms for automatic bandwidth selection.

Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/1467-9469.00359

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:30:y:2003:i:4:p:699-718

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:30:y:2003:i:4:p:699-718