Causal Reasoning from Longitudinal Data*
Elja Arjas and
Jan Parner
Scandinavian Journal of Statistics, 2004, vol. 31, issue 2, 171-187
Abstract:
Abstract. This paper reviews some of the key statistical ideas that are encountered when trying to find empirical support to causal interpretations and conclusions, by applying statistical methods on experimental or observational longitudinal data. In such data, typically a collection of individuals are followed over time, then each one has registered a sequence of covariate measurements along with values of control variables that in the analysis are to be interpreted as causes, and finally the individual outcomes or responses are reported. Particular attention is given to the potentially important problem of confounding. We provide conditions under which, at least in principle, unconfounded estimation of the causal effects can be accomplished. Our approach for dealing with causal problems is entirely probabilistic, and we apply Bayesian ideas and techniques to deal with the corresponding statistical inference. In particular, we use the general framework of marked point processes for setting up the probability models, and consider posterior predictive distributions as providing the natural summary measures for assessing the causal effects. We also draw connections to relevant recent work in this area, notably to Judea Pearl's formulations based on graphical models and his calculus of so‐called do‐probabilities. Two examples illustrating different aspects of causal reasoning are discussed in detail.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2004.02-134.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:31:y:2004:i:2:p:171-187
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().