Maximum Likelihood Estimation for Cox's Regression Model Under Case–Cohort Sampling
Thomas H. Scheike and
Torben Martinussen
Scandinavian Journal of Statistics, 2004, vol. 31, issue 2, 283-293
Abstract:
Abstract. Case–cohort sampling aims at reducing the data sampling and costs of large cohort studies. It is therefore important to estimate the parameters of interest as efficiently as possible. We present a maximum likelihood estimator (MLE) for a case–cohort study based on the proportional hazards assumption. The estimator shows finite sample properties that improve on those by the Self & Prentice [Ann. Statist. 16 (1988)] estimator. The size of the gain by the MLE varies with the level of the disease incidence and the variability of the relative risk over the considered population. The gain tends to be small when the disease incidence is low. The MLE is found by a simple EM algorithm that is easy to implement. Standard errors are estimated by a profile likelihood approach based on EM‐aided differentiation.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2004.02-064.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:31:y:2004:i:2:p:283-293
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().