Quasi‐Likelihood Regression with Multiple Indices and Smooth Link and Variance Functions
Jeng‐Min Chiou and
Hans‐Georg Müller
Scandinavian Journal of Statistics, 2004, vol. 31, issue 3, 367-386
Abstract:
Abstract. A flexible semi‐parametric regression model is proposed for modelling the relationship between a response and multivariate predictor variables. The proposed multiple‐index model includes smooth unknown link and variance functions that are estimated non‐parametrically. Data‐adaptive methods for automatic smoothing parameter selection and for the choice of the number of indices M are considered. This model adapts to complex data structures and provides efficient adaptive estimation through the variance function component in the sense that the asymptotic distribution is the same as if the non‐parametric components are known. We develop iterative estimation schemes, which include a constrained projection method for the case where the regression parameter vectors are mutually orthogonal. The proposed methods are illustrated with the analysis of data from a growth bioassay and a reproduction experiment with medflies. Asymptotic properties of the estimated model components are also obtained.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2004.02-117.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:31:y:2004:i:3:p:367-386
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().