Confidence Intervals for Current Status Data
Moulinath Banerjee and
Jon A. Wellner
Scandinavian Journal of Statistics, 2005, vol. 32, issue 3, 405-424
Abstract:
Abstract. The likelihood ratio statistic for testing pointwise hypotheses about the survival time distribution in the current status model can be inverted to yield confidence intervals (CIs). One advantage of this procedure is that CIs can be formed without estimating the unknown parameters that figure in the asymptotic distribution of the maximum likelihood estimator (MLE) of the distribution function. We discuss the likelihood ratio‐based CIs for the distribution function and the quantile function and compare these intervals to several different intervals based on the MLE. The quantiles of the limiting distribution of the MLE are estimated using various methods including parametric fitting, kernel smoothing and subsampling techniques. Comparisons are carried out both for simulated data and on a data set involving time to immunization against rubella. The comparisons indicate that the likelihood ratio‐based intervals are preferable from several perspectives.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2005.00454.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:32:y:2005:i:3:p:405-424
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().