Non‐parametric Bayesian Inference for Integrals with respect to an Unknown Finite Measure
Torkel Erhardsson
Scandinavian Journal of Statistics, 2008, vol. 35, issue 2, 369-384
Abstract:
Abstract. We consider the problem of estimating a collection of integrals with respect to an unknown finite measure μ from noisy observations of some of the integrals. A new method to carry out Bayesian inference for the integrals is proposed. We use a Dirichlet or Gamma process as a prior for μ, and construct an approximation to the posterior distribution of the integrals using the sampling importance resampling algorithm and samples from a new multidimensional version of a Markov chain by Feigin and Tweedie. We prove that the Markov chain is positive Harris recurrent, and that the approximating distribution converges weakly to the posterior as the sample size increases, under a mild integrability condition. Applications to polymer chemistry and mathematical finance are given.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2007.00579.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:35:y:2008:i:2:p:369-384
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().