EconPapers    
Economics at your fingertips  
 

The Support Reduction Algorithm for Computing Non‐Parametric Function Estimates in Mixture Models

Piet Groeneboom, Geurt Jongbloed and Jon A. Wellner

Scandinavian Journal of Statistics, 2008, vol. 35, issue 3, 385-399

Abstract: Abstract. In this paper, we study an algorithm (which we call the support reduction algorithm) that can be used to compute non‐parametric M‐estimators in mixture models. The algorithm is compared with natural competitors in the context of convex regression and the ‘Aspect problem’ in quantum physics.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2007.00588.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:35:y:2008:i:3:p:385-399

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:35:y:2008:i:3:p:385-399