On a Unified Generalized Quasi–likelihood Approach for Familial–Longitudinal Non‐Stationary Count Data
Brajendra C. Sutradhar,
Vandna Jowaheer and
Gary Sneddon
Scandinavian Journal of Statistics, 2008, vol. 35, issue 4, 597-612
Abstract:
Abstract. In this paper, conditional on random family effects, we consider an auto‐regression model for repeated count data and their corresponding time‐dependent covariates, collected from the members of a large number of independent families. The count responses, in such a set up, unconditionally exhibit a non‐stationary familial–longitudinal correlation structure. We then take this two‐way correlation structure into account, and develop a generalized quasilikelihood (GQL) approach for the estimation of the regression effects and the familial correlation index parameter, whereas the longitudinal correlation parameter is estimated by using the well‐known method of moments. The performance of the proposed estimation approach is examined through a simulation study. Some model mis‐specification effects are also studied. The estimation methodology is illustrated by analysing real life healthcare utilization count data collected from 36 families of size four over a period of 4 years.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2008.00607.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:35:y:2008:i:4:p:597-612
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().