Building and Fitting Non‐Gaussian Latent Variable Models via the Moment‐Generating Function
Tore Kleppe () and
Hans J. Skaug
Scandinavian Journal of Statistics, 2008, vol. 35, issue 4, 664-676
Abstract:
Abstract. For certain classes of hierarchical models, it is easy to derive an expression for the joint moment‐generating function (MGF) of data, whereas the joint probability density has an intractable form which typically involves an integral. The most important example is the class of linear models with non‐Gaussian latent variables. Parameters in the model can be estimated by approximate maximum likelihood, using a saddlepoint‐type approximation to invert the MGF. We focus on modelling heavy‐tailed latent variables, and suggest a family of mixture distributions that behaves well under the saddlepoint approximation (SPA). It is shown that the well‐known normalization issue renders the ordinary SPA useless in the present context. As a solution we extend the non‐Gaussian leading term SPA to a multivariate setting, and introduce a general rule for choosing the leading term density. The approach is applied to mixed‐effects regression, time‐series models and stochastic networks and it is shown that the modified SPA is very accurate.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2008.00611.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:35:y:2008:i:4:p:664-676
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().