Non‐parametric Regression Tests Using Dimension Reduction Techniques
Berthold R. Haag
Scandinavian Journal of Statistics, 2008, vol. 35, issue 4, 719-738
Abstract:
Abstract. Testing for parametric structure is an important issue in non‐parametric regression analysis. A standard approach is to measure the distance between a parametric and a non‐parametric fit with a squared deviation measure. These tests inherit the curse of dimensionality from the non‐parametric estimator. This results in a loss of power in finite samples and against local alternatives. This article proposes to circumvent the curse of dimensionality by projecting the residuals under the null hypothesis onto the space of additive functions. To estimate this projection, the smooth backfitting estimator is used. The asymptotic behaviour of the test statistic is derived and the consistency of a wild bootstrap procedure is established. The finite sample properties are investigated in a simulation study.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2008.00608.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:35:y:2008:i:4:p:719-738
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().