EconPapers    
Economics at your fingertips  
 

Covariate Selection for the Semiparametric Additive Risk Model

Torben Martinussen and Thomas H. Scheike

Scandinavian Journal of Statistics, 2009, vol. 36, issue 4, 602-619

Abstract: Abstract. This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared with the proportional model is, however, that there is no simple likelihood to work with. We here study a least squares criterion with desirable properties and show how this criterion can be interpreted as a prediction error. Given this criterion, we define ridge and Lasso estimators as well as an adaptive Lasso and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number of observations. We do this by studying the properties of the so‐called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare the Dantzig and adaptive Lasso for a moderate to small number of covariates. The methods are applied to a breast cancer data set with gene expression recordings and to the primary biliary cirrhosis clinical data.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2009.00650.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:36:y:2009:i:4:p:602-619

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:36:y:2009:i:4:p:602-619