Parameter Estimation for a Bidimensional Partially Observed Ornstein–Uhlenbeck Process with Biological Application
Benjamin Favetto and
Adeline Samson
Scandinavian Journal of Statistics, 2010, vol. 37, issue 2, 200-220
Abstract:
Abstract. We consider a bidimensional Ornstein–Uhlenbeck process to describe the tissue microvascularization in anti‐cancer therapy. Data are discrete, partial and noisy observations of this stochastic differential equation (SDE). Our aim is to estimate the SDE parameters. We use the main advantage of a one‐dimensional observation to obtain an easy way to compute the exact likelihood using the Kalman filter recursion, which allows to implement an easy numerical maximization of the likelihood. Furthermore, we establish the link between the observations and an ARMA process and we deduce the asymptotic properties of the maximum likelihood estimator. We show that this ARMA property can be generalized to a higher dimensional underlying Ornstein–Uhlenbeck diffusion. We compare this estimator with the one obtained by the well‐known expectation maximization algorithm on simulated data. Our estimation methods can be directly applied to other biological contexts such as drug pharmacokinetics or hormone secretions.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2009.00679.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:37:y:2010:i:2:p:200-220
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().