Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models
Il Do Ha,
Maengseok Noh and
Youngjo Lee
Scandinavian Journal of Statistics, 2010, vol. 37, issue 2, 307-320
Abstract:
Abstract. Frailty models with a non‐parametric baseline hazard are widely used for the analysis of survival data. However, their maximum likelihood estimators can be substantially biased in finite samples, because the number of nuisance parameters associated with the baseline hazard increases with the sample size. The penalized partial likelihood based on a first‐order Laplace approximation still has non‐negligible bias. However, the second‐order Laplace approximation to a modified marginal likelihood for a bias reduction is infeasible because of the presence of too many complicated terms. In this article, we find adequate modifications of these likelihood‐based methods by using the hierarchical likelihood.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2009.00671.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:37:y:2010:i:2:p:307-320
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().