A Model Validation Procedure when Covariate Data are Missing at Random
Lei Jin and
Suojin Wang
Scandinavian Journal of Statistics, 2010, vol. 37, issue 3, 403-421
Abstract:
Abstract. In the presence of missing covariates, standard model validation procedures may result in misleading conclusions. By building generalized score statistics on augmented inverse probability weighted complete‐case estimating equations, we develop a new model validation procedure to assess the adequacy of a prescribed analysis model when covariate data are missing at random. The asymptotic distribution and local alternative efficiency for the test are investigated. Under certain conditions, our approach provides not only valid but also asymptotically optimal results. A simulation study for both linear and logistic regression illustrates the applicability and finite sample performance of the methodology. Our method is also employed to analyse a coronary artery disease diagnostic dataset.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2009.00674.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:37:y:2010:i:3:p:403-421
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().