Goodness‐of‐Fit Test for Monotone Functions
Cécile Durot and
Laurence Reboul
Scandinavian Journal of Statistics, 2010, vol. 37, issue 3, 422-441
Abstract:
Abstract. In this article, we develop a test for the null hypothesis that a real‐valued function belongs to a given parametric set against the non‐parametric alternative that it is monotone, say decreasing. The method is described in a general model that covers the monotone density model, the monotone regression and the right‐censoring model with monotone hazard rate. The criterion for testing is an ‐distance between a Grenander‐type non‐parametric estimator and a parametric estimator computed under the null hypothesis. A normalized version of this distance is shown to have an asymptotic normal distribution under the null, whence a test can be developed. Moreover, a bootstrap procedure is shown to be consistent to calibrate the test.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2010.00688.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:37:y:2010:i:3:p:422-441
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().