EconPapers    
Economics at your fingertips  
 

A Non‐Parametric Estimator of the Spectral Density of a Continuous‐Time Gaussian Process Observed at Random Times

Jean‐marc Bardet and Pierre R. Bertrand

Scandinavian Journal of Statistics, 2010, vol. 37, issue 3, 458-476

Abstract: Abstract. In numerous applications data are observed at random times and an estimated graph of the spectral density may be relevant for characterizing and explaining phenomena. By using a wavelet analysis, one derives a non‐parametric estimator of the spectral density of a Gaussian process with stationary increments (or a stationary Gaussian process) from the observation of one path at random discrete times. For every positive frequency, this estimator is proved to satisfy a central limit theorem with a convergence rate depending on the roughness of the process and the moment of random durations between successive observations. In the case of stationary Gaussian processes, one can compare this estimator with estimators based on the empirical periodogram. Both estimators reach the same optimal rate of convergence, but the estimator based on wavelet analysis converges for a different class of random times. Simulation examples and an application to biological data are also provided.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2009.00684.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:37:y:2010:i:3:p:458-476

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:37:y:2010:i:3:p:458-476