EconPapers    
Economics at your fingertips  
 

The Dantzig Selector in Cox's Proportional Hazards Model

Anestis Antoniadis, Piotr Fryzlewicz and Frédérique Letué

Scandinavian Journal of Statistics, 2010, vol. 37, issue 4, 531-552

Abstract: Abstract. The Dantzig selector (DS) is a recent approach of estimation in high‐dimensional linear regression models with a large number of explanatory variables and a relatively small number of observations. As in the least absolute shrinkage and selection operator (LASSO), this approach sets certain regression coefficients exactly to zero, thus performing variable selection. However, such a framework, contrary to the LASSO, has never been used in regression models for survival data with censoring. A key motivation of this article is to study the estimation problem for Cox's proportional hazards (PH) function regression models using a framework that extends the theory, the computational advantages and the optimal asymptotic rate properties of the DS to the class of Cox's PH under appropriate sparsity scenarios. We perform a detailed simulation study to compare our approach with other methods and illustrate it on a well‐known microarray gene expression data set for predicting survival from gene expressions.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2009.00685.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:37:y:2010:i:4:p:531-552

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:37:y:2010:i:4:p:531-552