EconPapers    
Economics at your fingertips  
 

Multistate Survival Models as Transient Electrical Networks

Ronald W. Butler and Douglas A. Bronson

Scandinavian Journal of Statistics, 2014, vol. 41, issue 1, 167-186

Abstract: type="main" xml:id="sjos12014-abs-0001"> In multistate survival analysis, the sojourn of a patient through various clinical states is shown to correspond to the diffusion of 1 C of electrical charge through an electrical network. The essential comparison has differentials of probability for the patient to correspond to differentials of charge, and it equates clinical states to electrical nodes. Indeed, if the death state of the patient corresponds to the sink node of the circuit, then the transient current that would be seen on an oscilloscope as the sink output is a plot of the probability density for the survival time of the patient. This electrical circuit analogy is further explored by considering the simplest possible survival model with two clinical states, alive and dead (sink), that incorporates censoring and truncation. The sink output seen on an oscilloscope is a plot of the Kaplan–Meier mass function. Thus, the Kaplan–Meier estimator finds motivation from the dynamics of current flow, as a fundamental physical law, rather than as a nonparametric maximum likelihood estimate (MLE). Generalization to competing risks settings with multiple death states (sinks) leads to cause-specific Kaplan–Meier submass functions as outputs at sink nodes. With covariates present, the electrical analogy provides for an intuitive understanding of partial likelihood and various baseline hazard estimates often used with the proportional hazards model.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12014 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:41:y:2014:i:1:p:167-186

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:41:y:2014:i:1:p:167-186