Wavelet Thresholding Estimation in a Poissonian Interactions Model with Application to Genomic Data
Laure Sansonnet
Scandinavian Journal of Statistics, 2014, vol. 41, issue 1, 200-226
Abstract:
type="main" xml:id="sjos12009-abs-0001"> This paper deals with the study of dependencies between two given events modelled by point processes. In particular, we focus on the context of DNA to detect favoured or avoided distances between two given motifs along a genome suggesting possible interactions at a molecular level. For this, we naturally introduce a so-called reproduction function h that allows to quantify the favoured positions of the motifs and that is considered as the intensity of a Poisson process. Our first interest is the estimation of this function h assumed to be well localized. The estimator h ˜ based on random thresholds achieves an oracle inequality. Then, minimax properties of h ˜ on Besov balls B 2 , ∞ s ( R ) are established. Some simulations are provided, proving the good practical behaviour of our procedure. Finally, our method is applied to the analysis of the dependence between promoter sites and genes along the genome of the Escherichia coli bacterium.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12009 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:41:y:2014:i:1:p:200-226
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().