The Copula Information Criteria
Steffen Grønneberg and
Nils Lid Hjort
Scandinavian Journal of Statistics, 2014, vol. 41, issue 2, 436-459
Abstract:
type="main" xml:id="sjos12042-abs-0001">
We derive two types of Akaike information criterion (AIC)-like model-selection formulae for the semiparametric pseudo-maximum likelihood procedure. We first adapt the arguments leading to the original AIC formula, related to empirical estimation of a certain Kullback–Leibler information distance. This gives a significantly different formula compared with the AIC, which we name the copula information criterion. However, we show that such a model-selection procedure cannot exist for copula models with densities that grow very fast near the edge of the unit cube. This problem affects most popular copula models. We then derive what we call the cross-validation copula information criterion, which exists under weak conditions and is a first-order approximation to exact cross validation. This formula is very similar to the standard AIC formula but has slightly different motivation. A brief illustration with real data is given.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12042 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:41:y:2014:i:2:p:436-459
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().