Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model
Lixia Diao,
David D. Smith,
Gauri Sankar Datta,
Tapabrata Maiti and
Jean D. Opsomer
Scandinavian Journal of Statistics, 2014, vol. 41, issue 2, 497-515
Abstract:
type="main" xml:id="sjos12045-abs-0001"> Small area estimation has long been a popular and important research topic due to its growing demand in public and private sectors. We consider here the basic area level model, popularly known as the Fay–Herriot model. Although much of current research is predominantly focused on second order unbiased estimation of mean squared prediction errors, we concentrate on developing confidence intervals (CIs) for the small area means that are second order correct. The corrected CI can be readily implemented, because it only requires quantities that are already estimated as part of the mean squared error estimation. We extend the approach to a CI for the difference of two small area means. The findings are illustrated with a simulation study.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12045 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:41:y:2014:i:2:p:497-515
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().