Estimation of the Intensity Parameter of the Germ-Grain Quermass-Interaction Model when the Number of Germs is not Observed
David Dereudre,
Frédéric Lavancier and
Kateřina Staňková Helisová
Scandinavian Journal of Statistics, 2014, vol. 41, issue 3, 809-829
Abstract:
type="main" xml:id="sjos12064-abs-0001">
The Quermass-interaction model allows to generalize the classical germ-grain Boolean model in adding a morphological interaction between the grains. It enables to model random structures with specific morphologies, which are unlikely to be generated from a Boolean model. The Quermass-interaction model depends in particular on an intensity parameter, which is impossible to estimate from classical likelihood or pseudo-likelihood approaches because the number of points is not observable from a germ-grain set. In this paper, we present a procedure based on the Takacs–Fiksel method, which is able to estimate all parameters of the Quermass-interaction model, including the intensity. An intensive simulation study is conducted to assess the efficiency of the procedure and to provide practical recommendations. It also illustrates that the estimation of the intensity parameter is crucial in order to identify the model. The Quermass-interaction model is finally fitted by our method to P. Diggle's heather data set.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12064 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:41:y:2014:i:3:p:809-829
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().